Discipline: Actual problems of chemistry of polymer composites

Lecture 4.

Theme: Main Types and Characteristics of Fiber Reinforcements

Objective:

To understand the **different types of fiber reinforcements** used in polymer composites, their **key characteristics**, and how these fibers influence the mechanical, thermal, and functional properties of composites.

Key Questions:

- 1. What are fiber reinforcements in polymer composites?
- 2. What are the main types of fiber reinforcements?
- 3. What are the key characteristics of fibers affecting composite performance?
- 4. How does fiber type, length, and orientation influence mechanical and thermal properties?
- 5. What applications are typical for different fiber types?

Lecture Content:

Definition:

- Fiber reinforcements are elongated materials (continuous or short) embedded in a polymer matrix to improve strength, stiffness, and toughness.
- Fibers are one of the most effective reinforcements due to their **high** aspect ratio and directional load-carrying capacity.

• Main Types of Fiber Reinforcements:

1. Glass Fibers:

- Most widely used, good tensile strength, moderate cost.
- Types: E-glass (electrical applications), S-glass (high-strength applications).

2. Carbon Fibers:

- High stiffness and strength, low density, good thermal and chemical resistance.
- Used in aerospace, automotive, and sports equipment.

3. Aramid Fibers (Kevlar):

• High toughness, impact and abrasion resistance, lightweight.

• Applications: ballistic protection, ropes, composites with high energy absorption.

4. Natural Fibers:

- Hemp, flax, jute, sisal; biodegradable, low cost, moderate strength.
- Applications: automotive interiors, environmentally friendly composites.

5. Other Specialty Fibers:

 Boron, basalt, ceramic fibers for high-performance or extreme conditions.

• Key Characteristics of Fiber Reinforcements:

- Length: Continuous fibers provide maximum strength along the fiber axis; short fibers provide more isotropic reinforcement.
- Diameter: Smaller diameter increases surface area, improving matrix bonding.
- Aspect Ratio (Length/Diameter): Higher aspect ratio improves load transfer and stiffness.
- **Mechanical Properties:** Tensile strength, modulus, elongation, toughness.
- o **Thermal Properties:** Heat resistance, coefficient of thermal expansion.
- o Chemical Resistance: Stability in corrosive or harsh environments.
- o **Orientation and Distribution:** Aligned fibers maximize directional strength; random orientation provides more uniform properties.

Applications:

- Aerospace: carbon and glass fiber composites for high-strength, lightweight structures.
- Automotive: glass and natural fibers for panels, interiors, and structural components.
- Sporting goods: carbon and aramid fibers for bikes, rackets, and helmets.
- o Industrial: boron, basalt, or ceramic fibers for high-temperature or wear-resistant components.

Key Short Theses:

- 1. Fiber reinforcements are **elongated materials** that significantly enhance strength, stiffness, and toughness.
- 2. Main types include glass, carbon, aramid, natural, and specialty fibers.
- 3. Fiber characteristics such as **length**, **diameter**, **aspect ratio**, **and mechanical properties** determine reinforcement efficiency.
- 4. Fiber **orientation and distribution** strongly influence anisotropy and directional performance.

- 5. Surface properties of fibers affect matrix adhesion and stress transfer.
- 6. Different fibers are selected based on mechanical, thermal, chemical requirements, and cost.
- 7. Applications range from aerospace and automotive to sports and industrial composites, depending on fiber type and properties.

Control Questions:

- 1. What are fiber reinforcements and why are they effective in composites?
- 2. List the main types of fibers and their specific characteristics.
- 3. How do fiber length, diameter, and aspect ratio affect composite properties?
- 4. Why is fiber orientation important for composite performance?
- 5. What are the typical applications for glass, carbon, aramid, and natural fibers?
- 6. How do fiber surface properties influence the composite's mechanical behavior?

Recommended references

Main literature:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Semchikov Yu.D. High-molecular compounds: Textbook for universities. Moscow: Academy, 2003, 368.
- 4. S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala. Polymer composites. Wiley-VCH, 2012. 829 p.
- 5. Irmukhametova G.S. Fundamentals of polymer composite materials technology: textbook for universities; Al-Farabi Kazakh National University. Almaty: Kazakh University, 2016. 175 p.

Additional literature:

- 1. Polymer composite materials (part 1): a tutorial / L.I. Bondaletova, V.G. Bondaletov. Tomsk: Publishing house of Tomsk Polytechnic University, 2013. 118 p.
- 2. Polymer composite materials: structure, properties, technology. Edited by Berlin A.A. St. Petersburg, Publishing house "Profession", 2008. 560 p.

- 3. Polymer composite materials: structure, properties, technology: a tutorial / M.L. Kerber et al.; under the general editorship of A.A. Berlin. St. Petersburg: Profession, 2009.- 556, [4] p.
- 4. Bataev, A.A. Composite materials. Structure, production, application: a tutorial. manual / A. A. Bataev, V. A. Bataev. M.: Logos, 2006. 397, [3] p. (New University Library).